
Solution Path Heuristics for Predicting Difficulty and Enjoyment
Ratings of Roguelike Level Segments

Colan Biemer
biemer.c@northeastern.edu
Northeastern University

Boston, USA

Seth Cooper
se.cooper@northeastern.edu
Northeastern University

Boston, USA

ABSTRACT
When generating levels, algorithmically evaluating the results is
essential. In this paper, we looked at predicting a level’s difficulty
and enjoyment. Past work has approached this problem for puzzle
games like Sudoku by analyzing the characteristics of the initial
level, the solved level, and the process that led to that solution. In
this work, we examined a set of heuristics for Roguelike levels and
their solutions, and their relationship to subjective player ratings
of the levels. We gathered ratings of difficulty and enjoyment of
levels in a study with 143 players. We ran an ablation study on
the set of heuristics to find the best combination of heuristics for
predicting difficulty and enjoyment with a linear regression model,
and found solution path-based heursitics performed well. However,
these models did not outperform a simple baseline for predicting
enjoyment. Jaccard similarity on paths—a method we have not seen
used in the field of game AI—was a useful predictor of difficulty.
Testing proximity to enemies across a solution path is the only
heuristic needed to predict how enjoyable a level will be.

CCS CONCEPTS
• Human-centered computing;

KEYWORDS
procedural content generation, difficulty, player study
ACM Reference Format:
Colan Biemer and Seth Cooper. 2024. Solution Path Heuristics for Predicting
Difficulty and Enjoyment Ratings of Roguelike Level Segments. In Proceed-
ings of the 19th International Conference on the Foundations of Digital Games
(FDG 2024), May 21–24, 2024, Worcester, MA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3649921.3659846

1 INTRODUCTION
Procedural content generation (PCG) is an area of game artificial
intelligence that has been extensively researched [20, 27, 29, 33].
Creating enjoyable and challenging levels poses a significant chal-
lenge in level generation. As a result, there has been a plethora of
work looking at dynamic difficulty adjustment [16, 42], experience-
driven games [15, 30], and more. In the context of PCG, we need

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0955-5/24/05
https://doi.org/10.1145/3649921.3659846

methods that automatically and accurately assess content based on
concepts like difficulty and enjoyment.

One way to approach this problem is player modeling [39]. By
developing a model that finds what a player likes and dislikes, it
can be used to guide a PCG system to build levels that are custom-
tailored to the user [18]. The problem is that the player model must
quickly and accurately model the user to be usable. One previous
work used a method that found levels within a reasonable degree
of difficulty for a target user within four levels played [11].

In our work, we conducted a study with 143 players on a rogue-
like game, where we asked players to rate levels on a 7-point Likert
scale based on difficulty and enjoyment. Separately, levels were an-
alyzed based on eleven heuristics. These heuristics used the initial
level, the solved level, and the path found by an agent to solve the
level. We used these heuristics as input for a linear regression model
and conducted an ablation study to determinewhich heuristics were
most useful.

We found that heuristics based on solution paths were the most
useful for predicting the difficulty and enjoyment of a level. A
heuristic that uses Jaccard similarity, see Section 3.2, was highly
effective in predicting the difficulty of a level. This finding stands out
because we are not aware of any other work that has used Jaccard
similarity for games and difficulty research. Jaccard similarity as a
heuristic played a less prominent role in predicting how enjoyable
a level was, though. Instead, the most important heuristic was one
that used the path to solve the level and looked for enemies nearby.
This heuristic was also used prominently in predicting difficulty.
However, we did not find a combination of heuristics as input into
a linear regression model which outperformed a simple baseline
for predicting enjoyment.

Surprisingly, we found little if any correlation between the de-
gree of difficulty and enjoyment experienced by the player [22].

2 RELATEDWORK
Evaluating a roguelike level for its difficulty is typically based on
solution paths. Gellel and Sweetser [8] calculated the “interesting-
ness” of a level as the difference between the length of the solution
path and the length of the solution path if there were no obstacles—
e.g. locks, keys, enemies, etc. More recently, Weeks and Davis [37]
used the same approach except on a layout of rooms and hallways
to estimate the difficulty of a layout. Sampaio et al. [25] used a
different approach where given a desired difficulty, required items
were placed into a dungeon based on the distance to the player’s
starting point and the nearby entities to the placement point. Un-
fortunately, these studies did not validate their heuristics with a
player validation study.

https://orcid.org/0000-0003-4993-9548
https://orcid.org/0000-0003-4504-0877
https://doi.org/10.1145/3649921.3659846
https://doi.org/10.1145/3649921.3659846

FDG 2024, May 21–24, 2024, Worcester, MA, USA Colan Biemer and Seth Cooper

Solution paths are not the onlyway to approach difficulty. Gonzalez-
Duque et al. built an adaptive system to predict the time it will take
a specific player to beat a level [10], specifically for a roguelike
game and Sudoku. Time is an approximation for difficulty in puzzle
games in that we can consider that the longer the player takes to
solve a level, the harder the level. In their work, they evaluated a
Bayesian optimization algorithm by running a user study and found
positive results when compared to other baseline approaches.

A different approach to creating heuristics by hand is to use
crowd-sourced data. Jennings-Teats et al. ran a study where users
were shown short-level segments of a platformer and asked to
classify difficulty between one (easy) and six (hard) [18]. With this
data, they trained a classifier to rank the difficulty of any input level.
Reis et al. took a different approach in their work by crowd-sourcing
difficulty evaluation of all platformer level segments [22]. One
interesting point of note is that Reis et al. found a high correlation
between difficulty and enjoyment, which we could not replicate in
our work—we discuss this more in Section 4.4.

Mariño et al. ran a study on metrics for estimating difficulty,
enjoyment, and visual aesthetics of Mario levels on a 7-point Lik-
ert scale [21]. They found that the computation metrics they used
(linearity [31], leniency [31], density, and compression distance
[28]) could not accurately predict enjoyment and can be misleading
when estimating difficulty. They conclude that current computa-
tional metrics cannot replace a well-designed user study. While
our work uses a roguelike instead of a platformer, we also found
that the heuristics we tested poorly estimated enjoyment. When
it comes to difficulty, we found that a combination of heuristics
can provide a strong estimation of difficulty, but the only way a
combination was found was through a user study.

Wong et al. created a method designed to be game agnostic
in the sense that it could estimate difficulty for any puzzle game
that can be solved by a solver [38], such as Clingo [7]. They used
the results of the solver to rate difficulty based on the number of
required solver calculations, guesses, backtraces, certain branches,
uncertain branches, and the ratio of certain to uncertain branches.
These variables can be broken down into three categories: initial
features (features related to the start state of the puzzle), solution
features (features related to the end state of the puzzle), and dynamic
features (features related to the solution of the puzzle) [36]. These
six variables were fed into a genetic algorithm to find a formula
that best matched a training set of Sudoku puzzles to difficulty.
They found that the number of uncertain branches was highly
correlated to difficulty. A different approach is to use weighted
linear regression instead of a genetic algorithm [36].

Another area of work is the study of chess puzzle difficulty
[12, 14]. Of note in this area are websites like Chess.com and
Lichess.org, which have many players playing chess puzzles. With
so many players, there is no need to automate difficulty evaluation.
Instead, these websites can actively update puzzle ratings—referring
to the expected player rating needed to solve a puzzle—based on
player performance and update real-time [9, 26]. Lichess keeps an
open database of puzzles with ratings that could be used in future
research to validate generic puzzle difficulty approaches.1

1https://database.lichess.org/#puzzles

Figure 1: Tutorial level for DungeonGrams. The player is
represented by the ‘@’ symbol.

3 METHOD
3.1 DungeonGrams
DungeonGrams2 is a simple top-down roguelike, see Figure 1. Dun-
geonGrams was chosen because it has a dataset of 191 playable
levels publicly available [3], and it also comes with an already
implemented A* tree search [13] that can find a solution to a level.

The game starts with the player at the top left. A portal is at the
bottom-right of the level and the goal is to unlock the portal by
hitting every switch while avoiding enemies. There is a stamina
mechanic where the player starts with forty stamina and every
movement costs 1 stamina. The player loses if their stamina goes
down to zero or if an enemy or spike comes in contact with them.
However, the player can gain stamina by coming into contact with
food: 𝑠𝑡𝑎𝑚𝑖𝑛𝑎 ←𝑚𝑖𝑛(𝑠𝑡𝑎𝑚𝑖𝑛𝑎 + 25, 40).

We created an online version of the game for this work.3

3.2 Heuristics
Heuristics used initial features, solution features, and dynamic
features [36]. We used the already implemented A* tree search in
DungeonGrams to obtain the latter two feature types. A* returns
an array of tile coordinates (𝑥,𝑦) which we refer to as a path.

The downside of using A* is that we don’t have access to in-
formation like backtracking and uncertain branches [36, 38]. The
benefit is that our work may be more accessible because it’s easier
to build a tree search for a game than re-implement a game as a
logic program.

A* was run three times for each level. The first time was on
the original level. The second was on a version of the level where
enemies were removed. The third ran on a version of the level
without enemies and switches.

We built 7 heuristics based on work discussed in Section 2; we
used 2 heuristics—linearity and leniency—from the work of Smith
andWhitehead [31], andwe developed two of our own using Jaccard
similarity. In total, we used 11 heuristics.

2https://github.com/crowdgames/dungeongrams
3Link removed for anonymity.

Solution Path Heuristics. . . FDG 2024, May 21–24, 2024, Worcester, MA, USA

JaccardSimilarity(A,B) =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (1)

Jaccard similarity [17], see equation 1, is the size of the intersec-
tion of two sets divided by the size of the union. In terms of paths,
it is the number of common points between two paths divided by
the number of unique points for both paths. Our motivation for
introducing and testing Jaccard similarity as a heuristic for diffi-
culty and enjoyment comes from the observation that path length
difference does not capture enough of the differences between two
paths. For example, if there are two paths 𝑃𝑎—path to beat a level—
and 𝑃𝑏—path to beat the level, but the level was modified so that
all enemies were removed—and |𝑃𝑎 | = |𝑃𝑏 |. The path length differ-
ence (|𝑃𝑎 | − |𝑃𝑏 | = 0) implies that the two paths are the same. As
a heuristic for this example, path length difference says that the
two paths are equivalent. But, what if 𝑃𝑎 ∩ 𝑃𝑏 = ∅? Since there
are no common points between the two paths it is wrong to say
that the paths are 100% similar. From this line of reasoning, we
hypothesized that Jaccard Similarity would be better suited as a
heuristic for estimating difficulty and enjoyment because it better
captures changes in solution paths.

Below are the heuristics we used to evaluate levels:

path-no-enemies - Difference between the path length of the
original level and the path length of the level with no enemies.
path-nothing - Difference between the path length of the original
level and the path length of the level with no enemies and no
switches.
jaccard-no-enemies - Jaccard similarity of the path of the original
level and the path of the level with no enemies.
jacard-nothing - Jaccard similarity of the path of the original level
and the path of the level with no enemies and no switches.
proximity-to-enemies - Using the completion path found for
the original level, each position in the path was used to search for
enemies up to three tiles away in every direction. For each enemy,
one over the Manhattan distance to that enemy from the tile on
the path was summed. This means that the more enemies near the
optimal completion path, the larger the value of this heuristic. The
sum was then divided by the length of the path. This is similar to
a heuristic from Tremblay et al. which uses the exact distance for
every agent via an A* search to calculate a distance to enemy metric
[35].
proximity-to-food - The same as proximity-to-enemies, except it
searches for food rather than enemies.
stamina-percent-enemies - Percent difference between the end-
ing stamina for the tree search on the original level and the stamina
left for the level with no enemies.
stamina-percent-nothing - Percent difference between the end-
ing stamina for the tree search on the original level and the stamina
left for the level with no enemies and no switches.
density [31] - Number of solid tiles, including spikes, divided by
the total number of tiles in the level.
leniency [31] - Number of enemies, spikes, and switches divided
by the total number of tiles in the level.
food-density - Number of food tiles divided by the total number
of tiles in the level.

3.3 Player Study
We ran an online study that recruited 150 workers on Mechanical
Turk. Methods had approval from the authors’s Institutional Review
Board.

Each participant was paid 1 dollar. We estimated hourly wage
by tracking a user’s time to beat a level, allowing for a maximum
of 60 seconds per attempt. Based on actual playtimes after running
the study, we added a bonus of 50 cents for an estimated median
hourly wage of twelve dollars an hour.

Each participant was asked to agree to a consent form and then
taken to the game. At the game, they were immediately presented
with a payment code so they could receive payment without playing
a single level. For thosewho opted to play, they first played a tutorial
level that helped show the basics of how to play the game. If the
player lost a level twice, they were given the option to give up and
skip the level to avoid players becoming frustrated and quitting.

After they beat the tutorial level or gave up, a questionnaire
appeared with two statements: “This level was difficult” and “This
level was enjoyable to play.” The player could respond by selecting
between “strongly disagree” and “strongly agree” on a 7-point Likert
scale, with the middle being “neutral”.

After the survey, a random level was selected from the level
dataset for the player to play and the survey followed after they
completed the level. This continued until the player hit 11 levels
played,4 including the tutorial level, or they quit. No identifying
information was requested or stored.

3.4 Predicting Difficulty and Enjoyment
The heuristics from Section 3.2 were calculated for every level
and made into a dataset with median player-rated difficulty and
median player-rated enjoyment. Note that the expected output is
a continuous value instead of categorical. Our reasoning for this
decision is as follows. We have multiple player responses for each
level. One solution to take advantage of these would be to make
the correct output for each level be the mode. However, there is
an ordering factor implicit in our scale and we wanted to capture
that not only for this work but for future work as well. As a result,
we decided that converting the survey results to continuous values
was best for this work. In that regard, we used the median instead
of the mean because it better represents the ordinal data from a
Likert survey [40], especially when the dataset size is small [32].

To evaluate which heuristics were important, we ran an ablation
study using the training portion of the data. We used a linear regres-
sionmodel [24]. Due to the limited size of the dataset, we used k-fold
cross-validation, where 𝑘 = 5, and minimized the mean square error
(MSE) with a train-test split of 0.8. We removed the tutorial level
from the dataset due to being an outlier in the dataset, likely a
result of being the first level played. The top ten combinations out
of 2, 047 potentials were used to evaluate feature importance.5 The
best combination of heuristic features—as defined by the combina-
tion of heuristics which resulted in the lowest MSE—was used to
train a model on the full training set and tested on the test set.
4Based on a pilot study, we calculated the average time spent per level. We used the
average time to estimate costs and came up with eleven as the maximum number of
levels a player can play and still be compensated fairly.
5There are 11 heuristics, meaning 211 = 2048 possible models. We did not test a model
with no inputs, resulting in 2047 total models.

FDG 2024, May 21–24, 2024, Worcester, MA, USA Colan Biemer and Seth Cooper

Figure 2: Survey results from players ranking difficulty and
enjoyment for every level they played.

We also compared the best linear regression model to a simple
baseline. For difficulty, it returned the mean difficulty across all
surveys. For enjoyment, it returned the mean enjoyment score
across all surveys.

4 EVALUATION
4.1 Player Study
Out of the 150 recruited, 143 participated and completed at least one
level. Seventy participants completed all eleven levels. On average,
each player completed 7.9 levels; this average does not take into
account whether the player beat the level or gave up. In the case
of giving up, players gave up on 41% of the levels they played. Not
considering the tutorial level, levels were played by a minimum of
1 player, a mean of 5.2 players, a median of 5 players, and a max
of 10 players with a standard deviation of 2.0; a non-random level
selection method would have improved this distribution.

In total, players made 3, 086 attempts to complete the levels.
There were three reasons players lost: coming into contact with
an enemy (71%), running out of stamina (20%), and running into a
spike (9%). There was an overall win rate of 18%. On average, one

Heuristic Difficulty Enjoyment
density 1.0 0.0

food-density 0.0 0.0
jaccard-no-enemies 0.0 0.5
jaccard-nothing 1.0 0.0

leniency 0.2 0.0
path-no-enemies 0.0 0.0
path-nothing 0.4 0.8

proximity-to-enemies 1.0 1.0
proximity-to-food 0.2 0.4

stamina-percent-nothing 0.2 0.4
stamina-percent-enemies 0.5 0.0

Table 1: Percent heuristic usage for the top-ten best perform-
ing heuristic combinations for predicting difficulty and en-
joyment. The top four heuristics for both are bolded. Note
the tie for proximity-to-food and stamina-percent-nothing
for predicting enjoyment.

playthrough of a level (not necessarily beating it) took 11.3 seconds.
Ratings of difficulty and enjoyment can be seen in Figure 2. The
median difficulty rating was 4, which links to “neutral”. On the
other hand, players gave enjoyment a median rating of 6, which
links to “agree”.

We also tested for agreement in level ratings. To do this we
created two columns, agree and disagree, in which each row was
the sum of ratings per a level with a threshold of 4 or “neutral”,
where user ratings less than 4 went to disagree and user ratings
greater than 4 went to agree; neutral ratings were not included in
either category. For each level, we calculated the max of the two
variables divided by the sum as level agreement. The mean of level
agreement across all levels was calculated as the agreement of user
ratings. Agreement on the difficulty of a level was 73.4%; players
generally agreed on whether a level was difficult or not. Agreement
for enjoyment was much higher at 87.2%.

4.2 Difficulty
The number of times a heuristic was used in the top ten heuris-
tic combinations can be seen in Table 1. density, jaccard-nothing,
and proximity-to-enemies were used by all ten. We assumed that
path length was a good representative of difficulty [8], however,
path-no-enemies wasn’t used once and path-nothing only 4 out of
10 times. Instead, using Jaccard similarity is a stronger approach
because it is primarily concerned with how similar the paths are.
Path length doesn’t capture differences if both paths are the same
length. However, Jaccard similarity was only successful in the case
of jaccard-nothing, whereas jaccard-no-enemies was not used.

Figure 3 shows scatter plots of the top four features—jaccard-
nothing, proximity-to-enemies, density, and stamina-percent-enemies—
against difficulty. stamina-percent-enemies is the bottom performing
of these top four, and it is easy to see why: When the value is equal
to zero, there is a vertical line of points from 1 to 7 for difficulty.
The other three do not suffer from this as much, but it is somewhat
prominent for jaccard-nothing and proximity-to-enemies. There was
also some surprise that density played such a prominent role in

Solution Path Heuristics. . . FDG 2024, May 21–24, 2024, Worcester, MA, USA

Figure 3: Top four features used to predict difficulty.

Figure 4: Difficulty prediction histogram for 𝑌𝑡𝑟𝑢𝑒 − 𝑌𝑝𝑟𝑒𝑑 .

predicting difficulty, but it does reduce the number of available
actions to the user and force them near enemies. Further, the graph
shows that while there is noise, there are no vertical lines of points
which likely improves predicting difficulty. However, each plot does
not show a clear pattern and is clearly subject to noise. As a result,
it is unsurprising to find that the top ten models—for difficulty
prediction and enjoyment prediction—all used a combination of
input heuristics rather than a single heuristic as input.

The best combination of heuristics was jaccard-nothing, proximity-
to-enemies, stamina-percent-enemies, and density. Using these as
input for a linear regression model, we tested the model on the test
set and found that the median square error was 0.96, and the max
square error was 8.68. A value of less than one for the median is
a good sign because it means that the prediction was within one
category of the 7-Likert scale; the model was generally close to the
user’s rating of difficulty.

The baseline returns the mean difficulty from the player study.
When run on the test set, it had a median square error of 1.27 and a

max square error of 5.80. The linear regression model had a lower
median square error but a higher max square error.

The square error doesn’t give a perfect picture of whether the
model is generally over or underestimating difficulty. For that, we
use the difference (𝑌𝑡𝑟𝑢𝑒 − 𝑌𝑝𝑟𝑒𝑑), as seen in Figure 4, where 𝑌𝑝𝑟𝑒𝑑
is calculated with a linear regression model trained with the best
combination of heuristics and 𝑌𝑡𝑟𝑢𝑒 is the test dataset. Predictions
were to the left of the column associated with zero 17 times and
predictions were on the right 17 times. The error size was larger
in the positive direction, meaning that difficulty was generally
underestimated.

4.3 Enjoyment
Table 1 also shows the number of times a heuristic was used in
the top ten heuristic combinations for predicting enjoyment. The
best-performing heuristic was proximity-to-enemies. We expected
proximity-to-enemies to play less of a role in predicting enjoyment
and more difficulty, but it played a significant role for both. The
second most used heuristic was path-nothing. This yields the inter-
esting conclusion that path length was more useful in predicting
enjoyment than difficulty. Also, note that path-no-enemies wasn’t
used once. There is a similar pattern where jaccard-nothing was a
top-performing heuristic for difficulty and it is not used once for
enjoyment, but jaccard-no-enemies is used for five out of the ten best-
performing heuristic combinations for predicting enjoyment. Only
two other heuristics were used to predict enjoyment: proximity-to-
food and stamina-percent-nothing. We expected proximity-to-food to
play less of a role in the prediction of enjoyment, but it’s reasonable
to assume that acquiring extra stamina may have given players a
small sense of accomplishment and/or relief while playing.

Figure 5 shows scatter plots for the top four features against
enjoyment. In the case of all four, the vertical lines noted in Section
4.2 are occurring. The least pronounced of these is with proximity-
to-enemies. path-nothing is more pronounced in the vertical lines
than the other three, but it is the second-best performer. jaccard-no-
enemies displays minimal vertical lines except for when the path
is unchanged—i.e. equal to 0. In this regard, proximity-to-food also
behaves poorly when the path found to complete the level does not
have nearby food.

FDG 2024, May 21–24, 2024, Worcester, MA, USA Colan Biemer and Seth Cooper

Figure 5: Top four features used to predict enjoyment.

Figure 6: Enjoyment prediction histogram for 𝑌𝑡𝑟𝑢𝑒 − 𝑌𝑝𝑟𝑒𝑑 .

The top-performing model used two heuristics: path-nothing
and proximity-to-enemies. The second best-performing combina-
tion added stamina-percent-nothing. We trained a linear regression
model with path-nothing and proximity-to-enemies as input. For the
test set, the median square error was 0.79 and the max square error
was 5.27. We were better able to predict enjoyment than difficulty,
but also note that enjoyment followed a clearer distribution than
difficulty, see Figure 2.

The baseline, which returns the mean enjoyment score from the
player study, had a median square error of 0.70 and a max square
error of 2.84. The baseline outperformed our best-performing model
in both cases. Future work should identify better heuristics for
predicting enjoyment.

Figure 6 shows the distribution of errors for 𝑌𝑡𝑟𝑢𝑒 −𝑌𝑝𝑟𝑒𝑑 , where
𝑌𝑝𝑟𝑒𝑑 is calculated with a linear regression model trained with only
proximity-to-enemies and 𝑌𝑡𝑟𝑢𝑒 is the test dataset. Again, this is
useful because it gives us information on whether we are overesti-
mating or underestimating the expected enjoyment of a level. There
are 12 levels predicted to be more enjoyable than what users said
and 24 levels predicted to be less enjoyable than what users said.

Thus, the model generally predicts that levels are less enjoyable
than they are. It is also interesting to note that there are only two
levels within the bin for zero error.

4.4 Correlation between Difficulty and
Enjoyment

As noted in the related work section, past work has observed a
positive correlation between difficulty and enjoyment [22], but we
were unable to replicate this. We ran our tests by finding the median
difficulty and enjoyment for each level. We tested the correlation
between difficulty and enjoyment and found that the Pearson corre-
lation coefficient [5] was -0.083 with a p-value of 0.005, the Kendall
rank correlation coefficient [1] was -0.122 with a p-value of 0.033,
and the Spearman rank correlation coefficient [41] -0.194 with a p-
value of 0.007. The coefficients are very close to zero, meaning there
is little if any relationship between difficulty and enjoyment, and
any relationship appears to be negative. Further, each coefficient
showed a low p-value which indicates statistical significance in our
finding with 190 total samples. This suggests that it is incorrect to
assume a positive correlation between difficulty and enjoyment of
roguelikes where players have to avoid enemies.

We can also examine this subjectively. Figure 7 shows four levels
evaluated by participants that have been selected based on being
the most or least difficult and the most or least enjoyable. Starting
at the bottom left, it can be seen that the path to beat the level
doesn’t require any interactions with the enemies—enemies are
represented by a red hashtag—to beat the level. The result is a level
that requires very little thought to complete.

Going to the right to min difficulty and max enjoyment, we can
see that the player is required to get food—the green ‘&’— to have
enough stamina to beat the level, and there is also a switch—the
blue ‘*’—which the player must come in contact with to complete
the level. These additional factors contribute to the experience,
but we think the most interesting part of the level can be seen by
looking at the path. In the middle, the path passes two enemies,
but notice that the agent does not move to avoid the enemies. The
agent moves as if the enemies aren’t there. We believe that this
realization led to a more satisfying solution.

Solution Path Heuristics. . . FDG 2024, May 21–24, 2024, Worcester, MA, USA
M
ax

D
iffi

cu
lty

@ - - - - - - - - X X X X X X X X - -
- - - - - - - - - X X X X X X X X - -
- - X - - - - - - X X X X X X X X - -
- - X X X - - - - X X X X X X X X - -
- - - X X - - - - - - - - - # X X - -
- - - X X - - - - - - - - - - X X - -
- - - X X - - - - - - # - - - - * - -
- - # X X - - - - X X X X X X X X - -
- - - X X - - - - X X X X X X X X - -
- - - X X - - - - X X X X X X X X - -
- - - X X - - - - X X X X X X X X - O

@ - X X X X X X X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - -
- - ^ ^ ^ ^ - - - - * - - - - - - - -
- - - - - - - - - - - - - - # - - - -
- - ^ ^ ^ ^ - - - - - # - - - - * - -
- - - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - -
- - X X X X X X X X X X X X X X X - O

M
in

D
iffi

cu
lty

@ - - - - - - - - - - - - - - X X - -
- - - - - - - - - - - - - - - X X - -
- - X - - - - - - - - - - - - X X - -
- - X X X - - - - - - - - - - X X - -
- - - X X - - - - - - - - - - X X - -
- - - X X - - - - - - - - - - X X - -
- - - X X - - - - - - - - - - X X - -
- - # X X - - # - - - - - - - X X - -
- - - X X - - - - - # - - - - X X - -
- - - X X - - - - - - - - - - - - - -
- - - X X - - - - - - - - - - - - - O

@ - X X - - - - - - - - - ^ ^ ^ ^ - -
- - X X - - - - - - - - - - - - - - -
- - X X - - - X X - - - - - - - X - -
- - X X - # - X X X X - - - - - X - -
- - X X - - - - - X X - - - - - X - -
- - X X X X - - - X X - - - - - * - -
- - X X X X - - - X X - - - - - X - -
- - X X X X - - # X X - - - - - X - -
- - X X X X - - - X X - - - - - X - -
- - - - - - - - - X X - - - - - - - -
- - & - - - - - - X X - - ^ ^ ^ ^ - O

Min Enjoyment Max Enjoyment

Figure 7: Example levels for min and max of difficulty and
enjoyment based on mean ratings from study participants.
Red arrows show path found by the A* agent to complete the
level.

Changing to max difficulty and minimum enjoyment, it is clear
that the section with two enemies and one pathway to get to the
switch is a difficult challenge. It may be that the lack of options on
how to solve the movement puzzle resulted in low enjoyment and
high difficulty.

Finally, the maximum of both difficulty and enjoyment features
a very similar level to the one we just examined, but it has more
open space, which lends some credence to the idea that difficulty
comes at the cost of fun when player options are reduced.

5 CONCLUSION
In this work, we ran a player study with 143 participants to evaluate
DungeonGrams levels in terms of difficulty and enjoyment on a 7-
Likert scale. We found that most players found it enjoyable to play
levels in DungeonGrams, but the results were more diverse in terms
of difficulty. We found that there was not a correlation between
difficulty and enjoyment for DungeonGrams. We used 9 heuristics
from past work and 2 new ones with Jaccard similarity. These were
used as input into a model to predict how difficult and enjoyable
a level would be for the average player. We found that heuristics
that incorporate solution path information — beyond just lengths —
were useful in predictions.

Besides using manually built heuristics, there is another ap-
proach that appears promising for future work. Rather than define
heuristics ourselves, heuristics can be found automatically [4, 19].
Our biases for what we think is difficult and for what we think is en-
joyable for a level won’t affect the generated heuristics. This in turn
may yield surprising results, which could cause us to reconsider
what makes a roguelike level difficult and enjoyable.

To test which manually built heuristics were most useful, we
ran a complete ablation study where all possible combinations of
feature inputs were tested with a linear regression model. The
best combination of heuristics to predict difficulty was jaccard-
nothing, proximity-to-enemies, stamina-percent-enemies, and density.
The best combination to predict enjoyment was path-nothing and
proximity-to-enemies. Of note, we found that proximity-to-enemies
was used by both sets of top ten models to predict difficulty and
enjoyment. Further, each top-performing model predicted difficulty

and enjoyment within one point on the Likert scale based on the
median square error. However, our model for predicting enjoyment
did not beat our baseline approach. Future work should find new
heuristics to better estimate enjoyment.

A limitation is our use of linear regression, which has an un-
bounded output on a problem bounded between 1 and 7. One way
to address this is to convert player scores to a percentage. With
the expected output bounded between 0 and 1, Beta regression
[6], which can model rates and proportions, could improve pre-
diction. Another approach is to move away from regression and
instead view the problem as a classification problem with 7 classes
of difficulty.

The player study did not take into account the player’s learning
curve [2] outside of a single tutorial level. It is easily understood that
the longer a player plays a game, the more they improve [23, 34], at
least up to a certain point. This could be addressed in future work
by adding tutorial levels or weighting the player’s ranking based
on the number of levels they’ve played.

REFERENCES
[1] Hervé Abdi. 2007. The Kendall rank correlation coefficient. Encyclopedia of

Measurement and Statistics. Sage, Thousand Oaks, CA (2007), 508–510.
[2] Sarit Barzilai and Ina Blau. 2014. Scaffolding game-based learning: Impact on

learning achievements, perceived learning, and game experiences. Computers &
Education 70 (2014), 65–79.

[3] Colan Biemer, Alejandro Hervella, and Seth Cooper. 2021. Gram-Elites: N-Gram
Based Quality-Diversity Search. In Proceedings of the FDG workshop on Procedural
Content Generation. 1–6.

[4] Edmund K Burke, Matthew R Hyde, Graham Kendall, and John Woodward. 2007.
Automatic heuristic generation with genetic programming: evolving a jack-of-all-
trades or a master of one. In Proceedings of the 9th annual conference on Genetic
and evolutionary computation. 1559–1565.

[5] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jing-
dong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson correlation coefficient.
Noise reduction in speech processing (2009), 1–4.

[6] Silvia Ferrari and Francisco Cribari-Neto. 2004. Beta regression for modelling
rates and proportions. Journal of applied statistics 31, 7 (2004), 799–815.

[7] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2014.
Clingo= ASP+ control: Preliminary report. arXiv preprint arXiv:1405.3694 (2014).

[8] Alexander Gellel and Penny Sweetser. 2020. A hybrid approach to procedural
generation of roguelike video game levels. In Proceedings of the 15th International
Conference on the Foundations of Digital Games. 1–10.

[9] Mark E Glickman. 2012. Example of the Glicko-2 system. Boston University 28
(2012).

[10] Miguel González-Duque, Rasmus Berg Palm, David Ha, and Sebastian Risi. 2020.
Finding game levels with the right difficulty in a few trials through intelligent
trial-and-error. In 2020 IEEE Conference on Games (CoG). IEEE, 503–510.

[11] Miguel Gonzalez-Duque, Rasmus Berg Palm, and Sebastian Risi. 2021. Fast
game content adaptation through Bayesian-based player modelling. In 2021 IEEE
Conference on Games (CoG). IEEE, 01–08.

[12] Matej Guid and Ivan Bratko. 2013. Search-based estimation of problem difficulty
for humans. In Artificial Intelligence in Education: 16th International Conference,
AIED 2013, Memphis, TN, USA, July 9-13, 2013. Proceedings 16. Springer, 860–863.

[13] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[14] Dayana Hristova, Matej Guid, and Ivan Bratko. 2014. Assessing the difficulty of
chess tactical problems. International Journal on Advances in Intelligent Systems
7, 3 (2014), 728–738.

[15] Tobias Huber, Silvan Mertes, Stanislava Rangelova, Simon Flutura, and Elisa-
beth André. 2021. Dynamic Difficulty Adjustment in Virtual Reality Exergames
through Experience-driven Procedural Content Generation. In 2021 IEEE Sympo-
sium Series on Computational Intelligence (SSCI). IEEE, 1–8.

[16] Robin Hunicke. 2005. The case for dynamic difficulty adjustment in games. In
Proceedings of the 2005 ACM SIGCHI International Conference on Advances in
computer entertainment technology. 429–433.

[17] Paul Jaccard. 1908. Nouvelles recherches sur la distribution florale. Bull. Soc.
Vaud. Sci. Nat. 44 (1908), 223–270.

[18] Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin. 2010. Polymorph:
dynamic difficulty adjustment through level generation. In Proceedings of the

FDG 2024, May 21–24, 2024, Worcester, MA, USA Colan Biemer and Seth Cooper

2010 Workshop on Procedural Content Generation in Games. 1–4.
[19] Kalev Kask and Rina Dechter. 2001. A general scheme for automatic generation

of search heuristics from specification dependencies. Artificial Intelligence 129,
1-2 (2001), 91–131.

[20] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. 2020. Pcgrl:
Procedural content generation via reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
Vol. 16. 95–101.

[21] Julian Mariño, Willian Reis, and Levi Lelis. 2015. An empirical evaluation of
evaluation metrics of procedurally generated Mario levels. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
Vol. 11. 44–50.

[22] Willian M. P. Reis, Levi H. S. Lelis, and Ya’akov Kobi Gal. 2015. Human com-
putation for procedural content generation in platform games. In 2015 IEEE
Conference on Computational Intelligence and Games (CIG). 99–106. https:
//doi.org/10.1109/CIG.2015.7317906

[23] Charles Reynaldo, Ryan Christian, Hansel Hosea, and Alexander AS Gunawan.
2021. Using video games to improve capabilities in decision making and cognitive
skill: A literature review. Procedia Computer Science 179 (2021), 211–221.

[24] Stuart Russell and Peter Norvig. 2009. Artificial intelligence: a modern approach
(3rd edition ed.). Pearson, Upper Saddle River.

[25] Pedro Sampaio, Augusto Baffa, Bruno Feijó, and Mauricio Lana. 2017. A fast
approach for automatic generation of populated maps with seed and difficulty
control. In 2017 16th Brazilian Symposium on Computer Games and Digital Enter-
tainment (SBGames). IEEE, 10–18.

[26] Anurag Sarkar and Seth Cooper. 2019. Transforming game difficulty curves
using function composition. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–7.

[27] Anurag Sarkar and Seth Cooper. 2021. Procedural Content Generation using
Behavior Trees (PCGBT). arXiv preprint arXiv:2107.06638 (2021).

[28] Noor Shaker, Miguel Nicolau, Georgios N Yannakakis, Julian Togelius, and
Michael O’neill. 2012. Evolving levels for super mario bros using grammati-
cal evolution. In 2012 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 304–311.

[29] Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content gener-
ation in games. Springer.

[30] Tianye Shu, Jialin Liu, and Georgios N Yannakakis. 2021. Experience-driven PCG
via reinforcement learning: A Super Mario Bros study. In 2021 IEEE Conference
on Games (CoG). IEEE, 1–9.

[31] Gillian Smith and Jim Whitehead. 2010. Analyzing the expressive range of a level
generator. In Proceedings of the 2010 Workshop on Procedural Content Generation
in Games. 1–7.

[32] Gail M Sullivan and Anthony R Artino Jr. 2013. Analyzing and interpreting
data from Likert-type scales. Journal of graduate medical education 5, 4 (2013),
541–542.

[33] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural content generation via machine learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257–270.

[34] Ryo Takaoka, Masayuki Shimokawa, and Toshio Okamoto. 2011. A Framework
of Educational Control in Game-based Learning Environment. In 2011 IEEE
11th International Conference on Advanced Learning Technologies. 32–36. https:
//doi.org/10.1109/ICALT.2011.18

[35] Jonathan Tremblay, Pedro Andrade Torres, and Clark Verbrugge. 2014. Measuring
risk in stealth games.. In FDG. Citeseer.

[36] Marc van Kreveld, Maarten Löffler, and Paul Mutser. 2015. Automated puzzle
difficulty estimation. In 2015 IEEE Conference on Computational Intelligence and
Games (CIG). 415–422. https://doi.org/10.1109/CIG.2015.7317913

[37] Michael Weeks and Jonathon Davis. 2022. Procedural dungeon generation for a
2D top-down game. In Proceedings of the 2022 ACM Southeast Conference. 60–66.

[38] H Wong et al. 2012. Rating logic puzzle difficulty automatically in a human
perspective. In Proceedings of DiGRA Nordic 2012 Conference: Local and Global–
Games in Culture and Society.

[39] Georgios N. Yannakakis, Pieter Spronck, Daniele Loiacono, and Elisabeth André.
2013. Player Modeling. In Artificial and Computational Intelligence in Games.

[40] Georgios N Yannakakis and Julian Togelius. 2018. Artificial intelligence and games.
Vol. 2. Springer.

[41] Jerrold H Zar. 2005. Spearman rank correlation. Encyclopedia of biostatistics 7
(2005).

[42] Mohammad Zohaib. 2018. Dynamic difficulty adjustment (DDA) in computer
games: A review. Advances in Human-Computer Interaction 2018 (2018).

https://doi.org/10.1109/CIG.2015.7317906
https://doi.org/10.1109/CIG.2015.7317906
https://doi.org/10.1109/ICALT.2011.18
https://doi.org/10.1109/ICALT.2011.18
https://doi.org/10.1109/CIG.2015.7317913

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 DungeonGrams
	3.2 Heuristics
	3.3 Player Study
	3.4 Predicting Difficulty and Enjoyment

	4 Evaluation
	4.1 Player Study
	4.2 Difficulty
	4.3 Enjoyment
	4.4 Correlation between Difficulty and Enjoyment

	5 Conclusion
	References

