
Dynamic Difficulty Adjustment via Procedural Level Generation Guided by a
Markov Decision Process for Platformers and Roguelikes

Colan F. Biemer
Northeastern

biemer.c@northeastern.edu

Abstract

Procedural level generation can create unseen levels and im-
prove the replayability of games, but there are requirements
for a generated level. First, a level must be completable. Sec-
ond, a level must look and feel like a level that would exist
in the game, meaning a random combination of tiles that hap-
pens to be completable is not enough. On top of these two
requirements, though, is the player experience. If a level is
too hard, the player will be frustrated. If too easy, they will
be bored. Neither outcome is desirable. A procedural level
generation system has to account for the player’s skill and
generate levels at the correct difficulty. I address this issue by
showing how a Markov Decision Process can be used as a di-
rector to assemble levels tailored to a player’s skill level, but
I’ve only demonstrated that my approach works with surro-
gate agents. For my thesis, I plan to build on my past work
by creating a full roguelike and platformer and running two
player studies to validate my approach.

Introduction
Procedural level generation (PLG) is a sub-area of procedu-
ral content generation which aims to generate game levels
(Shaker, Togelius, and Nelson 2016). Game levels have two
major requirements. The first requirement is that a generated
level should look and feel like a level in the target game.
For example, a Mario (Nintendo 1985) level looks distinctly
different from a level built for Rogue (A.I. Design 1980).
The second requirement is that whatever is generated must
be completable. If a level generated is not completable, it is
bound to result in a bad experience for the player. This alone
is a difficult task, but it isn’t enough for a PLG system to
be used in an actual game because the player’s experience
(Thue and Bulitko 2012) and skill (Massoudi and Fassihi
2013) should be taken into account when generating a level:
a highly skilled player will be bored if the PLG system out-
puts an easy level, a low skilled player will be frustrated if
the PLG system outputs a hard level. My thesis aims to ad-
dress this with one pipeline.

My work started by generating level segments for plat-
formers and roguelikes (Biemer, Hervella, and Cooper 2021)
using a modified version of MAP-Elites (Mouret and Clune

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2015). A full level is assembled by concatenating level seg-
ments together. This led to my second paper (Biemer and
Cooper 2022) which linked level segments together to form
a larger level. A linking algorithm was necessary to ensure
that an assembled level was completable and matched the
style of the target game. With these segments and links,
I built a Markov Decision Process (MDP) to make levels
where the MDP acted as a director to assemble levels based
on an ideal difficulty for the player (Biemer and Cooper
2023). I ran the MDP on a set of agents which mimicked
different play styles and found promising results, even when
I tested switching agents.

For my thesis, I plan to address several weaknesses in
my work. The first is the lack of human player evaluation.
The agents I wrote were simple, but they only approximate
the basics of a human player. For my work to be of use, it
needs to be validated by real people. The second area for
improvement is the poor approximation of difficulty used by
the MDP to assemble levels. The third and final piece is to
show how the pipeline, which I describe below, can be used
in an actual game. To that aim, I am actively developing a
platformer and a roguelike that will show how my work can
be put together to make a game with a procedural level gen-
eration system that adapts to the player by generating levels
at an ideal target difficulty.

Related Work
The basic building block of my thesis comes from the work
of Dahlskog, Togelius, and Nelson (2014) which showed
that an n-gram (Jurafsky 2000) can intake a corpus of levels,
where a level is broken down by columns, and output levels
that look and feel like the original game. A problem with
using n-grams to generate levels is that an n-gram with an n
that is too large will memorize whole sequences while an n
that is too small will generate seemingly random sequences,
and, regardless of the size of n, there is no guarantee that a
level generated by an n-gram is completable.

MAP-Elites (Mouret and Clune 2015) is a quality-
diversity genetic algorithm. It works by assessing solutions
based on behavioral characteristics (BCs) for diversity (e.g.
density or linearity of a level (Smith and Whitehead 2010))
and fitness for quality (e.g. how far an agent can make it
through a given level). Each BC represents an axis that has
been tessellated to form a grid of n dimensions, where n is

the number of BCs. Within each square of the grid, there
may be elites that have been assessed based on fitness. An
elite is placed into a given square based on its characteris-
tics. To generate new solutions, elites are selected from the
grid, and genetic operators—mutation and crossover—are
run. The resulting solution is assessed and placed into the
grid. Placement occurs if there is no elite at the target grid
square or if the newly generated solution has better fitness
than the current elite. The output of MAP-Elites is a corpus
of solutions, which are, in my case, levels.

Dynamic difficulty adjustment (DDA) (Hunicke 2005)
can take many forms (e.g. adjusting player health, chang-
ing NPC behavior, etc.), but the specific form related to my
thesis is DDA through level generation. The earliest work
that I’m aware of comes from Jennings-Teats, Smith, and
Wardrip-Fruin (2010) and they ran a data collection pro-
cess that had players play a selection of levels and then
assess the difficulty. A model was trained on this data and
then used to rank generated level segments. With a model
to rank a player’s skill level, levels were selected to match
the player’s current skill level. Another work, by González-
Duque et al. (2020) used MAP-Elites to generate a grid of
levels for multiple agents, where the objective is to find a
level with a sixty percent win rate for the target agent. With
these grids, they tested how quickly a grid can be updated
for a new agent with the intelligent trial-and-error algorithm
(Cully et al. 2015). Overall, this is very similar to my work.
We both use the MAP-Elites grid as a starting point and an
offline reinforcement learning method (in my case, an MDP)
in an online environment. However, unlike my work, when
working with real players, they need an agent that can rea-
sonably approximate the player for an update, whereas my
work does not rely on a surrogate for the player. Gonzalez-
Duque, Palm, and Risi (2021) addressed this concern in a
follow-up work using Bayesian optimization. They found
that their solution could find an ideal level based on a de-
sired target difficulty—difficulty was approximated as the
time to solve a level—in approximately four iterations. In
comparison to my approach which used an MDP, we found
that an MDP took ≈ 7 levels to adapt to a new player when
given an extreme case of a player switching, see the paper
for more details (Biemer and Cooper 2023).

A different approach is to focus on the player’s experi-
ence (Thue and Bulitko 2012). This can be seen as a more
all-encompassing approach where a generator is optimizing
for a wide range of variables such as fun, sense of influence,
etc. Thue and Bulitko use an MDP to represent their game
and use a manager to observe the player and make modi-
fications to the MDP. For example, the player intensity is
tracked, one variable is the player’s mouse movement, and if
that value exceeds a threshold, then the MDP is modified to
stop spawning enemies for a certain time. A more recent ap-
proach (Shu, Liu, and Yannakakis 2021) developed a model
to track the player’s experience and that model was used to
evaluate future levels in a reinforcement learning process.

Work to Date
Gram-Elites: N-Gram Based Quality Diversity
Search
Gram-Elites (Biemer, Hervella, and Cooper 2021) builds on
top of MAP-Elites by modifying genetic operators to be
based on n-grams, see the code1 or paper for more informa-
tion. The result is that every level generated is guaranteed
to be well-formed, meaning there are no broken in-game
structures, such as malformed pipes in Mario. We tested
Gram-Elites against MAP-Elites for two platformers and a
roguelike, and found that Gram-Elites created more levels
that were completable and well-formed in less time for each
game.2

On Linking Level Segments
When we attempted to connect the level segments built with
Gram-Elites to form a larger level, we found that even if
a level segment was guaranteed to be playable, it did not
mean that the concatenation of two or more completable
level segments was itself completable (Biemer and Cooper
2022). The solution3 we developed had two steps: structure
completion and a tree search for completability. Structure
completion used n-grams to ensure that the level segments
being connected didn’t have incomplete structures at either
side and if either did, an n-gram completed those structures.
After structure completion, completability was tested with
an agent. If the level was not completable, a tree search ran
on level slices (column or row of a level depending on the
game’s orientation) that did not have structures—the tree
search can be sped up by manually defining these level slices
to reduce the search space—until a max depth was reached
or a completable level was found. A link generated was guar-
anteed to result in a completable and well-formed level.

To test linking, we used the resulting grids from Gram-
Elites for all three games. Linking was tested for neigh-
bors (i.e. four cardinal directions in two dimensions) in the
grid and compared to concatenation. For the horizontal plat-
former and roguelike, linking was a hundred percent effec-
tive in generating links. For the vertical platformer, it was
ninety-nine percent effective, whereas concatenation only
resulted in a completable level eleven percent of the time.
We also tested using the links generated to form a level of
more than two segments. In the case of both platformers, this
was completely fine. For the roguelike, though, there were
long-term dependencies due to a stamina mechanic which
made linkers built for two-level segments fail when used for
larger levels. We proposed one solution which required the
link generated to have an item that gave stamina back to the
player, but the more viable solution would be to run the link-
ing algorithm on all three level segments.

Level Assembly as a Markov Decision Process
When the past two works are put together, the result is a
graph where Gram-Elites builds the nodes (level segments)

1https://github.com/bi3mer/GramElites
2https://github.com/bi3mer/GramElitesData
3https://github.com/bi3mer/LinkingLevelSegments

and the linking algorithm builds the edges (links), and this
graph can be used as the structure for an MDP to generate
levels for dynamic difficulty (Biemer and Cooper 2023).4
The goal of the MDP is to generate levels that maximize its
reward, where the reward is a mixture of the designer re-
ward, which we define as difficulty and player reward. Start-
ing with designer reward, we averaged the behavioral char-
acteristics of a level segment as a stand-in for difficulty; this
is a limitation that I discuss in the Future Work section. The
player reward represents what the player enjoys and we cre-
ated surrogate player models to represent different kinds of
enjoyment (e.g. likes hard levels) and skills (e.g. low skill).
The MDP starts biased completely towards the designer and
adapts to the player both in terms of skill and preferences.

To form a level with the graph, there is a start node and a
death node. The start node is where level formation begins.
Any node that the player has previously visited—meaning
that the player played that level segment and completed all
of it—has an edge from the start node. From there, the edges
are based on linking. In testing, we compared our MDP with
a director that randomly selected nodes and a greedy director
which selected the highest reward. We found that the MDP
outperformed both directors in terms of reward, but failed
to adapt if there was a player switch. To remedy this, we in-
troduced a modified optimization algorithm which we called
adaptive policy iteration. This algorithm removed neighbors
from the start node based on how often the player failed.
The result was a director that performed better than the base
MDP and one that quickly adapted to new players even in
the most extreme case of a switch between a highly-skilled
player that liked difficult levels and a low-skilled player that
liked easy levels.

Future Work
Agent-based simulations are an interesting testbed but have
many limitations (Manzo and Matthews 2014). The agents
that I developed were simplistic by design. They had ran-
dom chance built into them, but their skills did not improve
or regress as they played. They did not grow frustrated by
levels that were too hard or show any signs of boredom play-
ing levels that were too easy. The result was an interesting
algorithm on paper, but not useful because it was not vali-
dated by real players.

To address this, I plan to run a player study on two games
I am developing, where a greedy director is compared to an
MDP-based director. The first game is a simple web-based
platformer, similar to Mario, to test my existing work. The
second game takes my work a step further and is a web-
based roguelike. The player has to find a set of items to un-
lock a door and proceed deeper into the dungeon. It builds
on top of all the previous work by using segments generated
with Gram-Elites and combining them with links to form a
graph. The MDP selects rooms to be placed in a dungeon.
An extra layer of difficulty based on player progression is
added through a layout generator which tells the MDP where
rooms need to be placed. Hallways between rooms are filled
in based on the layout. This changes the requirements for a

4https://github.com/crowdgames/mdp-level-assembly

level generated where completability is based on whether an
agent can access a hallway to the north, south, east, or west
from one or more of the corresponding hallways. A room
must have at least one such path, but more allows for them
to be used in different contexts of the layout. The layout it-
self guarantees that a path exists between every room. The
rooms selected cannot invalidate those paths. The resulting
dungeon level will be fully playable, but there is one extra
addition that I’m working on. I am designing the agent to
not use any in-game items (e.g. the lightning scroll, which
shoots lightning and automatically kills the closest, in-sight
enemy) to guarantee that a level is completable. The result
will be that every dungeon generated has a guaranteed path
where the player does not have to interact with or damage
any enemy.

For both games, I need to use an improved measure of dif-
ficulty for the MDP to optimize around.5 One approach is to
have an agent solve a level and then solve the level again, but
requirements like keys are removed. The difference between
path lengths can be used as an indicator of difficulty (Weeks
and Davis 2022). In my work, though, I need to validate a
measure of difficulty before using it. As a result, I am plan-
ning two player studies—one for the platformer and one for
the roguelike—that evaluate difficulty. Depending on how
many levels I can feasibly have evaluated, I may be able
to take the approach that Reis, Lelis, and Gal (2015) took
and have every level segment evaluated. If not, I will either
train a model to predict difficulty based on heuristics as in-
put (Jennings-Teats, Smith, and Wardrip-Fruin 2010; Wong
et al. 2012) or on the level as input (Guzdial, Sturtevant, and
Li 2016). I believe the former approach is of more value as
I will be able to identify what heuristics will be useful in
identifying what makes a game difficult.

References
A.I. Design. 1980. Rogue.
Biemer, C.; Hervella, A.; and Cooper, S. 2021. Gram-Elites:
N-Gram Based Quality-Diversity Search. In Proceedings of
the FDG workshop on Procedural Content Generation, 1–6.
Biemer, C. F.; and Cooper, S. 2022. On Linking Level Seg-
ments. In 2022 IEEE Conference on Games (CoG), 199–
205. IEEE.
Biemer, C. F.; and Cooper, S. 2023. Level Assem-
bly as a Markov Decision Process. arXiv preprint
arXiv:2304.13922.
Cully, A.; Clune, J.; Tarapore, D.; and Mouret, J.-B. 2015.
Robots that can adapt like animals. Nature, 521(7553): 503–
507.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. In Proceedings of the 18th Inter-
national Academic MindTrek Conference: Media Business,
Management, Content & Services, 200–206.
González-Duque, M.; Palm, R. B.; Ha, D.; and Risi, S. 2020.
Finding game levels with the right difficulty in a few trials

5Another possibility is to use a multi-objective MDP where
multiple skills are used to represent different kinds of difficulty,
but I believe that this approach is out of scope for my thesis.

through intelligent trial-and-error. In 2020 IEEE Conference
on Games (CoG), 503–510. IEEE.
Gonzalez-Duque, M.; Palm, R. B.; and Risi, S. 2021. Fast
game content adaptation through Bayesian-based player
modelling. In 2021 IEEE Conference on Games (CoG), 01–
08. IEEE.
Guzdial, M.; Sturtevant, N.; and Li, B. 2016. Deep static and
dynamic level analysis: A study on infinite Mario. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 12, 31–38.
Hunicke, R. 2005. The case for dynamic difficulty adjust-
ment in games. In Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in computer enter-
tainment technology, 429–433.
Jennings-Teats, M.; Smith, G.; and Wardrip-Fruin, N. 2010.
Polymorph: dynamic difficulty adjustment through level
generation. In Proceedings of the 2010 Workshop on Pro-
cedural Content Generation in Games, 1–4.
Jurafsky, D. 2000. Speech & language processing. Pearson
Education India.
Manzo, G.; and Matthews, T. 2014. Potentialities and limi-
tations of agent-based simulations. Revue française de soci-
ologie, 55(4): 653–688.
Massoudi, P.; and Fassihi, A. H. 2013. Achieving dynamic
AI difficulty by using reinforcement learning and fuzzy logic
skill metering. In IGIC, 163–168.
Mouret, J.-B.; and Clune, J. 2015. Illuminating search
spaces by mapping elites. arXiv preprint arXiv:1504.04909.
Nintendo. 1985. Super Mario Bros.
Reis, W. M. P.; Lelis, L. H. S.; and Gal, Y. K. 2015. Human
computation for procedural content generation in platform
games. In 2015 IEEE Conference on Computational Intelli-
gence and Games (CIG), 99–106.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.
Shu, T.; Liu, J.; and Yannakakis, G. N. 2021. Experience-
driven PCG via reinforcement learning: A Super Mario Bros
study. In 2021 IEEE Conference on Games (CoG), 1–9.
IEEE.
Smith, G.; and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 1–
7.
Thue, D.; and Bulitko, V. 2012. Procedural game adaptation:
Framing experience management as changing an MDP. Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 8(2): 44–50.
Weeks, M.; and Davis, J. 2022. Procedural dungeon gener-
ation for a 2D top-down game. In Proceedings of the 2022
ACM Southeast Conference, 60–66.
Wong, H.; et al. 2012. Rating logic puzzle difficulty auto-
matically in a human perspective. In Proceedings of DiGRA
Nordic 2012 Conference: Local and Global–Games in Cul-
ture and Society.

